Chapter 4
Theories and Lagrangians II: Introducing
Gauge Fields

Gauge theories play a central role in our current understanding of the fundamental
interactions. The weak, electromagnetic and strong interactions are well described
by gauge theories. We introduce them in this chapter for the first time. Although
we often talk about gauge invariance, or gauge symmetry, these terms are a bit
misleading. The gauge symmetry is more a redundancy in the description of the
physical degrees of freedom than a symmetry, as will be shown later on. The redun-
dancy is of course very useful because it makes Lorentz invariance and locality
explicit, but it is not a symmetry in the same sense as rotations or translations. Gauge
theories have incredible richness and complexity. Many aspects of their dynamics
are still poorly understood. In our presentation we just scratch the surface of a deep
subject.

4.1 Classical Gauge Fields

In classical electrodynamics the basic physical quantities are the electric and
magnetic fields E and B. They can be expressed in terms of the scalar and vector
potentials ¢ and A as

0A
EZ—V(p—E,

B=VxA. (4.1)

From these equations we see that specifying E and B does not uniquely determine
the potentials, since the former do not change under the gauge transformations

o(t,x) — @, X) + %S(I, x), A(t,x) —> A(t,x) — Ve(t, x). “4.2)

From a classical point of view the introduction of ¢ and A is seen as a technicality
that helps solving the Maxwell equations, but without physical relevance.
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The equations of electrodynamics can be recast in a manifestly Lorentz invariant
form using the four-vector gauge potential A* = (¢, A) and the antisymmetric field
strength tensor defined by

Fiy = 0,A, — 0,A,. (4.3)
The four Maxwell equations
V-E =p,
V-B=0,
d
V xE=——B, (“44)
ot

0
VxB=j+ —E,
J ot

are written in the form

wuFH = j*,
"9, Fyy = 0, 4.5)
where the four-current j* = (p,j) contains the charge density and the electric

current. The second set of equations are called the Bianchi identities and are satisfied
by any field strength (4.3). Notice that F,,, and therefore the Maxwell equations,
are invariant under the gauge transformations (4.2), which in covariant form read

Ay — Ay + 0,8 (4.6)

Finally, the equations of motion of a particle with mass m and charge ¢

mi:q(E—i—f{ xB) @.7)
take the form
dut
me—— = qF"u, (4.8)
dt

where u*(7) is the particle four-velocity as a function of the proper time t. These
equations of motion, depending only on the field strength F,, are also gauge
invariant.

The physical role of the vector potential becomes manifest only in quantum
mechanics. Using the prescription of minimal substitution p — p — gA, the
Schrodinger equation describing a particle with charge ¢ moving in an electromag-
netic field is

.0

1
— ¥ = | —— (V —igA)? v, 4,
ey [ 2m( iqA) +q¢] 4.9)
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Fig.4.1 Illustration of an
interference experiment to
show the Aharonov—Bohm
effect. S represents the
solenoid where the magnetic r
field is confined

Electron — S
source .

Screen

Due to the explicit dependence on the electromagnetic potentials ¢ and A, this equa-
tion seems to change under the gauge transformations (4.2). This is physically accept-
able only if the ambiguity does not affect the probability density given by |¥ (¢, x)|.
Therefore, a gauge transformation of the electromagnetic potential should amount
to a change in the (unobservable) global phase of the wave function. This is indeed
what happens: the Schrédinger equation (4.9) is invariant under the gauge transfor-
mations (4.2) provided the phase of the wave function is transformed at the same
time according to

W (t,x) —> e OOy (1 x). (4.10)

The Aharonov—Bohm Effect

This interplay between gauge transformations and the phase of the wave function
gives rise to surprising phenomena. A first evidence of the role played by the elec-
tromagnetic potentials at the quantum level was pointed out by Yakir Aharonov
and David Bohm [1]. Let us consider a double slit experiment as shown in Fig. 4.1,
where we have placed a shielded solenoid just behind the first screen. Although the
magnetic field is confined to the interior of the solenoid, the vector potential is nonva-
nishing also outside. The value of A outside the solenoid is locally a pure gauge, i.e.,
V x A = 0, however since the region outside the solenoid is not simply connected
the vector potential cannot be gauged to zero everywhere.

The dependence of the interference pattern with the magnetic field inside the
solenoid can be calculated very easily using the path integral formalism introduced
in Sect. 2.4. The probability amplitude for an electron emitted at # = 0 to be detected
at some given position x on the screen at a later time t is given by the propagator
K (x,Xg; ), where Xx¢ is the point where the electron is emitted. This propagator
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admits a path integral representation, where the integration has to be done taking
into account that there are two classes of paths that are topologically non-equivalent:
those passing through the upper and the lower slits.

The classical action of a nonrelativistic particle of mass m and charge g in the
presence of a vector potencial A is given by

1 1
S:/dt <§mX2+qX-A) =§/dzmx2+q/dx-A, @.11)
14

where the second term in the last equation is a line integral along the particle trajectory
y. Using Stokes’ theorem and V x A = 0 we find that the value of this term only
depends on the topological class of y, but not in the particular curve within each
class. Denoting by K(x, Xo; T) and K»(x, Xg; ) the propagators of the electron
going through each of the two slits in the absence of a magnetic field, the total
propagator with the magnetic field switched on can be written as

K. x0:7) = eI A g (x x01 1) + €I A K (x, %00 1)

= ¢/ Adx [K1 (x, X0: T) 4 9 A Ko (x % r)] . @12

Here I and I are two arbitrary curves going through each of the two slits and joining
xo with x (see Fig.4.1). I' is the closed curve surrounding the solenoid defined by
the union of Ff] and 1.

The interference pattern on the screen is determined by the relative phase between
the two terms in (4.12). The presence of the magnetic field confined to the solenoid
introduces an extra term depending on the value of the vector potential outside the

solenoid
U =exp (iq% A-dx). (4.13)
r

Due again to Stokes’ theorem and V x A = 0 the value of the phase does not depend
on the particular curve I" chosen, so far as it surrounds the solenoid. The conclusion
of this analysis is that the presence of the vector potential becomes observable even if
the electrons do not feel the magnetic field directly. Performing the double-slit exper-
iment when the magnetic field inside the solenoid is switched off we will observe
the usual interference pattern on the second screen. Switching on the magnetic field
a change in the interference pattern will appear due to the phase (4.13). This is the
Aharonov—-Bohm effect (see also [2] for an early prediction of the effect).

The first question that comes up is what happens with gauge invariance. Since A
can be changed by a gauge transformation it seems that the resulting interference
patters might depend on the gauge used. In fact the phase factor (4.13) is gauge
invariant: the gauge variation of A is —Ve that, being a total derivative, gives zero
upon integration over the close contour /.

The lesson we have learned is that in the quantum theory there are, apart from
the electric and magnetic fields, other gauge invariant quantities giving observable
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effects. An important difference with respect to E and B is that these gauge invariant
observables are non-local, as can be seen from the definition of the phase U.

Magnetic Monopoles

It is very easy to check that the vacuum Maxwell equations

V.-E=0

V.-B=0

VxE=_28 (4.14)
ot
)

VxB=—E
ot

remain invariant under the transformation
E-iB— em(E —iB), 60 €]0,2nr] (4.15)

that for & = 7 interchanges the electric and magnetic fields: E — B, B — —E.
This duality symmetry is however broken in the presence of electric sources (p, j).
Nevertheless the Maxwell equations can be “completed” by introducing sources for
the magnetic field (o, j,) in such a way that the duality (4.15) is restored when
supplemented by the transformation

OG = ijm)- (4.16)

p—ipm —> €(p—ipm), §—iim —> e

In covariant language, this modification of the Maxwell equations implies adding
sources on the right-hand side of the Bianchi identities

B FM = jH, 4.17)
where Jrﬁ = (Om, jm) and

—n 1
FW = ESW"AFM (4.18)

is the dual electromagnetic tensor field. This means @at, while electric charges act as
sources for Fy,,, magnetic charges are sources for F*V. The duality transformation
(4.15, 4.16) is written now as

Fuy + iFMv —sel? (F,w + il?,w),

it —sel? (j“ T ij,‘n‘), (4.19)
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keeping the extended Maxwell equations invariant. For § = 7 electric and magnetic
sources get interchanged and the field strength is replaced by its dual.

In 1931 Dirac [3] studied the possibility of finding solutions of the completed
Maxwell equations with a magnetic monopoles of charge g as a source

V. B = g8(x). (4.20)

Away from the position of the monopole V - B = 0 and the magnetic field can still
be derived locally from a vector potential A according to B = V x A. However,
this potential cannot be regular everywhere since otherwise Gauss’ theorem would
imply that the magnetic flux threading a closed surface around the monopole should
vanish, contradicting (4.20).

A solution to Eq. (4.20) in spherical coordinates is given by

B,=——=-, B,=By=0, 4.21)

1 0
Ay =—-"tan=, A, =Ag=0. (4.22)
TT

As expected, we find that this vector potential is singular at the half-line 6 = &
(see Fig.4.2). This singular line starting at the position of the monopole is called the
Dirac string and its position changes with a change of gauge but cannot be eliminated
by any gauge transformation. Physically, we can see it as an infinitely thin solenoid
confining a magnetic flux entering into the magnetic monopole from infinity that
equals the outgoing magnetic flux from the monopole.

Since the position of the Dirac string depends on the gauge chosen it seems that
we are facing a physical ambiguity. This would be rather strange since the Maxwell
equations are gauge invariant also in the presence of magnetic sources. The solution
to this apparent riddle lies in the fact that the presence of the Dirac string does not pose
any consistency problem as far as it does not produce any physical effect, i.e., if its
presence turns out to be undetectable. From our discussion of the Aharonov—Bohm
effect we know that the wave function of charged particles picks up a phase (4.13)
when surrounding a region where a magnetic flux is confined (such as the solenoid
in the Aharonov-Bohm experiment). Since the Dirac string is like an infinitely thin
solenoid, it will be unobservable if the phase picked up by the wave function of a
charged particle surrounding it is equal to one. An evaluation of (4.13) in the field
of the monopole shows that

98 =1 = qg=2mn with neZ. (4.23)

Interestingly, we are led to the conclusion that the presence of a single magnetic
monopole somewhere in the universe implies for consistency the quantization of the
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Fig.4.2 The Dirac
monopole

Dirac string

electric charge in units of 277/g, where g is the magnetic charge of the monopole.
This is called the Dirac charge quantization condition.

The idea of the magnetic monopole can be extended to dyons, particles having
both electric and magnetic charge (g, g). The equations of motion for such particles
in an electromagnetic field can be written remembering that magnetic charges couple
to the dual field strength and requiring invariance under duality. This leads to

mit = (qF’” + gﬁW)xv, (4.24)

where m is the mass of the dyon and the dot indicates differentiation with respect to
the proper time. Writing the right-hand side of this equation in components in the
nonrelativistic limit, we get the generalization of the Lorentz force acting on a dyon
with charges (g, g)

F:q(E+va)+g(B—vxE). (4.25)

The invariance under duality is obvious noticing that the parentheses in the right-
hand side of (4.24) can be written as Im[(g —ig) (F, —i F,,)*], which is manifestly
Invariant.

The Dirac quantization condition, valid for an electrically charged particle and a
magnetic monopole, can be extended to two dyons with charges (¢1, g1) and (¢2, £2).
To obtain this new condition one could proceed as in the case of the Dirac monopole

' The quantization of the electric charge has another consequence, which is that the gauge trans-

formation of the wave function (4.10) is periodic. Using technical jargon one says that the U(1)
gauge group gets compactified (see Appendix B). Although this might seem just a technical point,
it has important physical consequences for the production of monopoles in gauge theories.
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and impose that the corresponding singularities of the gauge potentials are unobserv-
able. Here instead we are going to exploit the invariance of both the extended Maxwell
equations and the equations of motion of the dyons under duality transformations.

These two facts imply that the proper quantization condition for the charge of the
dyons should also be duality invariant and, moreover, reduce to the Dirac condition
for the case (¢1, g1) = (¢,0), (g2, g&2) = (0, g). Taking into account the transfor-
mation of the electric and magnetic charges it is immediate to see that the following
combination is duality invariant

%
(41 - igl) (fh - igz) =qi1q2+ 8182+ i(fllgz - 42gl)~ (4.26)

A look at the generalized Lorentz force shows ¢g1g2> — g2g1 is the coupling constant
of the velocity-dependent part of the force between the two dyons. The other duality-
invariant combination, g1 > + g1 g2, gives the strength of the coupling of the velocity-
independent part of this force, i.e., their “Coulomb” interaction. Since the imaginary
part of Eq. (4.26) reduces to the Dirac quantization condition in the appropriate limit,
we arrive at

q182 — q281 = 2mn, wheren € Z, 4.27)

called the Dirac—Schwinger—Zwanziger quantization condition [4, 5].

There are some difficulties in considering quantum theories with fundamental
magnetic monopoles. One of them is that they cannot be handled in perturbation
theory, since the Dirac quantization condition implies that electric and magnetic
coupling constants are inverse of each other and cannot be simultaneously small. This
problem is avoided if monopoles are not fundamental objects but field configurations
with finite size and energy. It was proved by ’t Hooft and Polyakov [6, 7] that many
gauge theories contain such monopoles as solitonic solutions. The ’t Hooft-Polyakov
monopoles have masses that scale with the inverse of the coupling constant, and
therefore they are very heavy when the theory is weakly coupled. Only at large
gauge couplings this objects become light and can be counted among the low-lying
excitations of the system.

Monopoles are believed to have been produced copiously in the very early
Universe. It is a generic prediction of grand unified theories that monopoles occur
when a semisimple gauge group is spontaneously broken leaving a U(1) factor (spon-
taneous symmetry breaking will be explained in Chap.7). The reason is that this
U(1) is compact in the sense explained in the footnote of page 53, and therefore can
“accommodate” monopole solutions. The fact that these monopoles are not observed
today is believed to be the result of the dilution they underwent during the inflationary
era that presumably followed their production.
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4.2 Quantization of the Electromagnetic Field

We now proceed to the quantization of the electromagnetic field in the absence of
sources p = 0, j = 0. In this case the Maxwell equations (4.14) can be derived from
the Lagrangian density

1 1
Maxwell = _ZF,quuv = 5 ( 2 BZ) . (4.28)

Although in general the procedure to quantize the Maxwell Lagrangian is not very
different from the one used for the Klein—Gordon or the Dirac field, here we need to
deal with a new ingredient: gauge invariance. Unlike the cases studied so far, here the
photon field A, is not unambiguously defined because the action and the equations
of motion are insensitive to the gauge transformations A, — A, + d,&. A first
consequence of this symmetry is that the theory has less physical degrees of freedom
than what would be expected for a vector field.

The way to tackle the problem of gauge invariance is to fix the freedom in choosing
the electromagnetic potential before quantization. This can be done in several ways,
for example by imposing the Lorentz gauge fixing condition

9, A" = 0. (4.29)

Notice that this condition does not fix completely the gauge freedom since Eq. (4.29)
is left invariant by gauge transformations satisfying d,0"¢ = 0. One of the advan-
tages of the Lorentz gauge is that it is covariant and therefore does not pose any
danger to the Lorentz invariance of the quantum theory. Besides, applying it to the
Maxwell equation 9, F*¥ = 0 one finds

0=0,0"A" — 9, (9,A") = 9,0"A". (4.30)

Since A, satisfies the massless Klein-Gordon equation the photon, the quantum of
the electromagnetic interaction, has zero mass.

Once gauge invariance is fixed, A, (¢, X) can be expanded in a complete basis of
plane-wave solutions to Eq. (4.30)

ek, p)eKIrHikx (4.31)

where ¢, (k, 1) are the polarization vectors. In principle there are four independent
polarizations for the photon, labelled by A. The Lorentz gauge condition (4.29),
however, forces the polarization vectors to be transverse

ke, (k, 1) = k™e, (k, A)* = 0. (4.32)

This condition can be used to eliminate one polarization. We can get rid of another
one by using the on-shell condition k> = 0 and the residual gauge transformations
mentioned after Eq. (4.29). Finally we are left with just two physical independent
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transverse polarizations A = £1. They correspond to right and left circularly polar-
ized photons.

Now, upon quantization, the gauge field operator A 1 (t, X) can be written as the
following expansion

Aut: ) = Z/ (2n)‘2|k| [tk v, s

A==l

ek, 2)a "k, e RRX] L (433)
where the canonical commutation relations imply that

[&(k, »,a (K, ,\’)] — 213 2kDS(k — K8,
| (4.34)
[ak. 2). 4k, 1) = [Eﬁ(k, a,at (K, )J)] ~0

Therefore a(k, o), a'(k, 1) form a set of creation-annihilation operators for photons
with momentum k and helicity A.

Had we kept the unphysical degrees of freedom removed by the residual gauge
transformations, the spectrum would contain states with negative norm. To decouple
these states with negative probability is one of the main concerns in quantizing
theories with gauge invariance. In these theories there is a redundancy in the way
physical states are represented by rays in the Hilbert space .7”: a physical state is
represented by infinitely many rays in 7. Here we have dealt with this problem by
eliminating this redundancy explicitly, i.e., keeping only those polarizations that are
physical. Other strategies to handle this problem can be found in standard textbooks
(see Ref. [1-15] in Chap. 1). In Sect. 4.6 we will return to the problem of fixing the
gauge redundancy, this time using the path integral formalism.

From the previous discussion the reader might think that we have worked too
hard unnecessarily. If the photon has only two physical degrees of freedom, perhaps
we could describe it using two scalar degrees of freedom, instead of introducing a
redundant four-component gauge field. The obstacle is Lorentz invariance: the only
known way of describing the two photon polarizations in a Lorentz invariant way is
through the gauge field A . The gauge redundancy is the prize we pay for a Lorentz
invariant and local description of massless photons.

4.3 Coupling Gauge Fields to Matter

Once we know how to quantize the electromagnetic field we can consider interacting
theories containing electrically charged particles, for example electrons. To couple
the Dirac Lagrangian to electromagnetism we use the analysis of the Schrodinger
equation for a charged particle presented in pages 48—49. There we learned that the
gauge ambiguity of the electromagnetic potential is compensated by a U(1) phase
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shift in the wave function. The Lagrangian (3.36) is invariant under ¥ — e~'9%,
with ¢ a constant. This invariance is broken as soon as one identifies ¢ with the
position-dependent gauge transformation parameter of the electromagnetic field.
To promote this global U(1) symmetry of the Dirac Lagrangian to a local one
¥ — Y = e 9™y it is enough to replace 0y by a covariant derivative Dy, also
transforming under a gauge transformation D, — Dl’i, and satisfying

DLy =D, I:efiqs(x)w:l = ¢ MWDy, (4.35)
Such a covariant derivative can be constructed in terms of the gauge potential A, as
D, =09, +iqA,. (4.36)

The gauge transformation of A, absorbs the derivative of the gauge parameter and
Eq. (4.35) is satisfied. The electromagnetic field strength can be written in terms of
the commutator of two covariant derivatives as

[D,,Dy] =iqFy,. (4.37)

This identity will be useful in the construction of nonabelian gauge theories in the
next section.

The Lagrangian of quantum electrodynamics (QED), i.e., a spin-% field coupled
to electromagnetism,

1 — .
ZQED = —ZF,NF‘” + Y D—m)y, (4.38)
is invariant under the U(1) gauge transformations
Y —s e Dy A s A+ e (x). (4.39)

Unlike the theories we encountered so far, QED is an interacting theory. By plugging
(4.36) into the Lagrangian we find that the interaction term between fermions and
photons has the form

féiélg = _L%ﬂ()(gllt)) =—qA vy (4.40)

This shows that, as anticipated in the previous chapter (see page 43), the electric
current four-vector is given by j* = gy y*y. In the following we stick to the
general convention and denote the charge by e. In the case of electrons or muons, for
example, e is negative and equal to the elementary charge.

The quantization of interacting field theories like QED poses new problems that
we did not meet in the case of the free theories. In particular in most cases it is not
possible to solve the theory exactly. When this happens the physical observables
have to be computed in perturbation theory in powers of the coupling constant.
An added problem appears in the computation of quantum corrections to the classical
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result, which is plagued with infinities that should be taken care of. All these issues
will be addressed in Chaps. 6 and 8.

Here we can connect with the comments made at the beginning of the chapter.
The end result of our quantization procedure is to write the gauge field in terms of
the two physical degrees of freedom appearing in (4.33). Out of the four components
of A, only two represent physical degrees of freedom. It is clear that if we wrote
the theory (after including interactions) only in terms of the transverse degrees of
freedom the result would be a theory without explicit Lorentz symmetry and also with
non-local interactions. The inclusion of longitudinal- and timelike photons makes
these apparently lost, but fundamental properties, explicit. The basic problem in
the quantization of gauge theories is to make sure that at the quantum level the
additional components continue to be irrelevant. Unfortunately this is not always
possible, in some cases there are quantum anomalies making the theory inconsistent
(see Chap.9).

4.4 Nonabelian Gauge Theories

QED is the simplest example of a gauge theory coupled to matter based on the abelian
gauge symmetry of local U(1) phase rotations. Gauge theories based on nonabelian
groups can also be constructed. Our knowledge of the strong and weak interactions is
in fact based on the use of the nonabelian generalizations of QED, called Yang—Mills
theories.

Let us consider a gauge group G with hermitian generators T4, A = 1, ..., dimG
satisfying the Lie algebra®

[TA, TB] — i fABCTC (4.41)

We introduce a vector field A, = A/iT* taking values on the Lie algebra g of the
group G. Its gauge transformation is given by

Ay — Al = ———UdU '+ UA U, U=e*D, (4.42)

igym

where x(x) = XA(x)TA and gywm is the coupling constant. These gauge transfor-
mations are non-linear in the gauge function x (x). Infinitesimally, the matrix-valued
field A, transforms according to

1 .
8A, = —0ux —ilAy, x], (4.43)
8YM

which in components reads

2 Some basics facts about Lie groups have been summarized in Appendix B.
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1
54 = i+ AL (@4

As in the abelian case, the coupling of matter to a nonabelian gauge field is done
by introducing a covariant derivative. Let @ be a field (scalar or spinor) transforming
in a representation R of the gauge group G

® —5 &' = Upd. (4.45)
The covariant derivative satisfying D), @' = Ur D, @ is defined by
Dy® = 3,® — igymA, . (4.46)

where A, = A 2 Tl{‘ , with TI{‘ the generators in the representation R. In the particular
case of the adjoint representation the generators can be written in terms of the structure
constants

B
(7). = —ir*™e. (4.47)
and the covariant derivative takes the form
D,® =0,D —igym [A,L, <D] (adjoint representation). (4.48)

Comparing this expression with (4.43) we find that the infinitesimal transformation
of the gauge field can be expressed as
1
8A, = —Dyux. (4.49)
8YM

Our last task is to find the kinetic term for the nonabelian gauge fields. Generalizing
Eq. (4.37), we write

[D;u Dv] = —igymFuv, (4.50)
where F),, is the nonabelian field strength
Fuy=0,A, — 0,A, —igym [AH, AV] 4.51)

This expression reduces to (4.3) for abelian gauge groups, when the commutator of
the gauge fields vanishes. The field strength tensor takes values in the Lie algebra,
Fyuy = F,fVTA, where

Fi = 8,A} — 8,A% + gym fAPCAB AC. (4.52)
Unlike the case of the Maxwell theory the field strength for nonabelian gauge

fields is not gauge invariant. Using (4.50) and the transformation of the covariant
derivative it is easy to show that it transforms as
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Fu, — UF, U (4.53)

This gives the clue to constructing a gauge invariant Lagrangian for the nonabelian
gauge field A, as

1 |
7= —ETr(FWF’“’) = —ZF;‘VFAW, (4.54)

where the normalization Tr(TAT8) = %BAB has been used. A crucial difference
between this and the Lagrangian of electromagnetism is the presence of cubic and
quartic terms in the gauge field A, . This means that, unlike the photon, the nonabelian
gauge bosons act themselves as sources of the field. The equations of motion derived
from the Lagrangian (4.54) can be written as

D, F" =0, (4.55)

where D, is the covariant derivative in the adjoint representation shown in Eq. (4.48).
Just as in the Maxwell theory, the components of the nonabelian field strength

tensor F lfv in four dimensions can be decomposed into electric and magnetic fields

EA and BA

1

From (4.53) it follows that the nonabelian electric and magnetic fields are gauge
dependent. In terms of them the Lagrangian (4.54) becomes

1
&= E(EA EA —BA ~BA). (4.57)
In QCD E4 and B# are respectively known as chromoelectric and chromomagnetic
fields.
With all this information we can write a generic Lagrangian for a nonabelian
gauge field coupled to scalars ¢ and spinors ¥ as

L = —%Tr(FWF’”) + iy Dy + (Dyp) D*¢
— V[ Mi@) +ivsha@) ¥ — V@), 458)

where the covariant derivatives are in the representation of the field involved. The
Lagrangian of the standard model is of this form, with M1 (¢) and M;(¢) linear in ¢
and V (¢) of quartic order. This particular form of the functions appearing in (4.58)
is related to the good properties of the standad model at high energies.
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4.5 Understanding Gauge Symmetry

In classical mechanics the application of the Hamiltonian formalism starts with the
replacement of generalized velocities by momenta

pi=— = 4i=4ilq p). (4.59)
q;
Most of the time there is no problem in inverting the relations p; = p; (g, ¢). However
in some systems these relations might not be invertible and result in a number of
constraints of the type

falg,p) =0, a=1,...,Nj. (4.60)

These systems are called degenerate or constrained [8, 9].

The presence of constraints of the type (4.60) makes the formulation of the
Hamiltonian formalism more involved. The first problem is related to the ambi-
guity in defining the Hamiltonian, since the addition of any linear combination of
the constraints does not modify its value. Secondly, one has to make sure that the
constraints are consistent with the time evolution in the system. In the language of
Poisson brackets this means that further constraints have to be imposed in the form

{fa, H}pp ~ 0. 4.61)

Following [8], we use the symbol A to indicate a “weak” equality holding when the
constraints f, (g, p) = 0 are satisfied. Notice however that since the computation
of the Poisson brackets involves derivatives, the constraints can be used only after
the bracket is computed. In principle, the conditions (4.61) can give rise to a new
set of constraints g,(q, p) =0, b =1, ..., Na. Again these constraints have to be
consistent with time evolution and we have to repeat the procedure. Eventually this
finishes when a set of constraints is found that do not require any further constraint
to be preserved in time.

Once all the constraints of a degenerate system have been found we consider the

so-called first class constraints ¢,(q, p) = 0,a = 1, ..., M, those whose mutual
Poisson bracket vanishes weakly
{¢aa ¢h}PB = CabePe ~ 0. (4.62)

The constraints that do not satisfy this condition, called second class constraints,
can be eliminated by modifying the Poisson bracket [8], so for all practical purposes
we can forget about them. The total Hamiltonian of the theory is defined as the
canonical Hamiltonian plus a linear combination of all first-class constraints with
arbitrary coefficients

3 In principle it is also possible that the procedure finishes because some kind of inconsistent

identity is found. In this case the system itself is inconsistent as it happens with the Lagrangian
L(g.9)=gq.
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M
Hr = pigi — L+ ) ha()a. (4.63)

a=1

The total Hamiltonian and the canonical one coincide on the submanifold of phase
space defined by the first class constraints, where the dynamical evolution of the
system takes place.

What is the relation with gauge invariance? The answer lies in the fact that for a
singular system the first class constraints ¢, generate gauge transformations. Indeed,
the time evolution generated by the Hamiltonian (4.63) is ambiguous due to the
presence of the arbitrary functions A, (¢). Specifying the state of the system by the
values of the canonical variables at some reference time #(, the ambiguity in the time
evolution translates into a redundancy in the description of the state of the system
in terms of the values of the canonical variables at a later time #: the phase space
trajectories related by the infinitesimal transformations

M
gi —qi + D ea(O{4i. $aleB.

a=1

M
Pi —pi+ D ea(){pi. dalpp (4.64)

a=1

describe one and the same state.

This ambiguity in the description of the system in terms of the generalized coor-
dinates and momenta can be traced back to the equations of motion in Lagrangian
language. Writing them in the form

2L . 2L . aL

4] = T qj +—
3Giog; ' 3G;idq; ' g

, (4.65)

we find that in order to determine the accelerations in terms of the positions and
velocities, the matrix ag;zan,-
(4.60) precisely implies that the determinant of this matrix vanishes and therefore
the time evolution is not uniquely determined in terms of the initial conditions.

has to be invertible. However, the existence of constraints

Applications to Electrodynamics

After a general discussion we particularize the analysis to the Maxwell Lagrangian

1
L=-7 / d3x Fp FM. (4.66)
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The generalized momenta conjugate to A, is defined by

o= L FHO, (4.67)
8(doAy)

hence, 7° = 0 and 7/ = E’. The Hamiltonian is given by
— 3 I _ _ 3 1 2 2
H= | dx\n"pA,—ZL)= [ d’x 3 E-+B°)+ AoV -E|, (4.68)

where we have used d0)A = VA9 —m = VA( —E and integrated by parts the second
term in the last integral.

The Hamiltonian (4.68) shows that Ao (x) plays the role of a Lagrange multiplier
implementing Gauss’ law V - E = 0 as a constraint.* Thus 7° = 0and V - 7 = 0
form a set of two first class constraints generating gauge transformations. The ones
generated by 7° can be used to fix the value of Ag(x), thus defining a temporal
gauge. This does not completely fix the gauge freedom, since there are the gauge
transformations generated by Gauss’ law. Using the canonical Poisson brackets

{A,’(Z‘,X),Ej (l‘,X’)}pB =8ij8 (X—X/) (4.69)
we find these to be

SA; (1, x) = {A;(1,X), /d3x’g(z,x/)v.E(z,x’)}pB = 9ie(t, X), (4.70)

while Ag(z, x) is left invariant. This is equivalent to a general gauge transformation
generated by a time-independent gauge function &(x). Thus, for consistency, we take
&(t, x) in (4.70) to depend only on the spatial coordinates. The constraint V- E = 0
can be implemented by demanding V - A = 0, reducing the three degrees of freedom
of A to the two physical degrees of freedom of the photon.

So much for the classical analysis. In the quantum theory the constraint V-E = 0
has to be imposed on the physical states |phys). This is done by defining the following
unitary operator in the Hilbert space

U (e) = exp |:i/d3x8(x)V~E:|. 4.71)

By definition, physical states should not change when a gauge transformations is
performed. This is implemented by requiring the operator % (&) to act trivially on
them

% (¢)|phys) = |phys) = (V- E)|phys) = 0. 4.72)

4 This constraint can also be obtained from the requirement that 7° = 0 be preserved by the
time evolution, {w, H}pg = 0. A detailed analysis of Maxwell electrodynamics using the general
formalism for constrained systems can be found in [9].
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In the presence of a charge density p, this condition becomes (V - E — p)|phys) = 0.

The action of the gauge transformations in the quantum theory is very illuminating
in understanding the real role of gauge invariance [10—12]. We have learned that the
presence of a gauge symmetry in a theory reflects a degree of redundancy in the
description of physical states in terms of the degrees of freedom appearing in the
Lagrangian. In classical mechanics, for example, the state of a system is determined
by the value of the canonical coordinates (g;, p;). We know, however, that this is not
the case for constrained Hamiltonian systems, where the transformations generated
by the first class constraints change the value of ¢; and p; without actually changing
the physical state. Physical (i.e., measurable) quantities have to be free from such
ambiguity and therefore be represented by gauge invariant objects. The same happens
in classical field theory: in the Maxwell theory for every physical configuration
determined by the gauge invariant quantities E and B there is an infinite number of
possible values of A, related by gauge transformations A, = 9,¢.

In the quantum theory this means that one should identify into a single physical
state all rays in the Hilbert space related by the operator 7% (¢) with any gauge
function e(x). In other words, each physical state corresponds to a whole orbit of
states transforming among themselves by gauge transformations.

This explains the necessity of gauge fixing. In order to avoid the redundancy
in the states a further condition should be given selecting one single state on each
orbit. Once again, we connect with the opening comments in this chapter. In the
Hamiltonian quantization we see very clearly described how the gauge symmetry is
more a redundancy than a symmetry. In going to the timelike gauge, i.e., imposing
Ag = 0, we eliminate one of the components of the gauge field. In the initial value
surface we need to impose Gauss’ law (by requiring for example V - A = 0) to
eliminate yet one more degree of freedom, reducing the number of physical degrees
of freedom to two per gauge group generator.

4.6 Gauge Fields and Path Integrals

The redundancy in the Hilbert space is a source of complications when quantizing
gauge theories. This we have seen already in Sect. 4.2: the photon had two unphysical
polarizations removed using the Lorentz gauge fixing condition and the residual
gauge invariance.

In the path integral formalism the problem of gauge invariance reflects in the
necessity of carrying out the integration over gauge fields in a way that avoids over-
counting. This means that two field configurations related by a gauge transformation
should be considered as physically equivalent and included only once. For example,
a naive evaluation of the vacuum-to-vacuum amplitude (partition function)

¥ = / DAye~ 2 [ AT EF) (4.73)
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would include together with each gauge field configuration A, all others obtained
from it by an arbitrary gauge transformation, thus overcounting the result by an
infinite factor equal to the volume of the gauge group.

The correct evaluation of the integral (4.73) requires restricting the integration to
fields not related by gauge transformations. A practical way to do this is to notice
that the computation of observables in quantum field theory generically involves
quotients of path integrals [see Chap. 6 and in particular Eq. (6.35)]. Then it suffices
to cancel the (infinite) volume factor in the numerator and denominator.

To carry out this program we follow ideas due to Faddeev and Popov [13] and
begin by imposing a set of gauge fixing conditions of the form

FA(AL) = 0. (4.74)

They can be visualized as a “slice” in the space of all gauge field configurations.
Each A, falls into a gauge orbit generated by the gauge transformations acting on it.
Two gauge field configurations are nonequivalent if they lie on different orbits. The
condition (4.74) selects a representative on each orbit and has to satisfy a number of
requirements: it has to be reachable from any A, i.e., each gauge orbit should have
a representative satisfying (4.74), and this representative should be unique. To keep
expressions simple in the following we drop the group theory index in Eq. (4.74) and
denote the gauge conditions collectively by .% (4 ,) = 0.

The next step is to split the functional integral (4.73) into an integration over
the orbit representatives and an integral over each gauge orbit. This last integration
results in a common factor equal to the volume of the gauge group. This is done by
introducing the functional Agp[A ] through the following definition

1= Arp[A,] / gUs| 7 (Al)] 4.75)

where we are integrating over all gauge transformations and by Ag we denote the
gauge potential transformed by U. For reasons that will be explained soon, Agp[A ]
is called the Faddeev—Popov determinant. It is not difficult to show that it is gauge
invariant. Indeed, for any gauge transformation U’ we have

App[AYT! :/gUa[y (4L ]
- / ov"s[7 (aL) ] = Awlan™, @76

where we have made the change of variables U” = UU’ and used the gauge invari-
ance of the integration measure over the gauge group, 2U" = PU.
We insert now the identity (4.75) into the function integral (4.73)

¥ = / @AM@UAFP[AM](S[ﬂ (Ag) ]e*%f X T (Fu F1) @.77)
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Doing the change of variables A, — Afj ~and using the gauge invariance of both
the action and Agp[A, ], we remove all dependence on U from the integrand. If the
integration measure over the gauge fields ZA,, is gauge invariant, this change of
variables does not induce any Jacobian and the integration over the gauge group can
be factored out

z= (/ 7 U)/ D AW ARRIALIS| F (Ay)Je 2T TR 4 78)

We canignore the divergent prefactor and replace (4.73) by the gauge-fixed functional
integral

¥ = / @AMAFP[AM]a[ﬁ(AM)L—%f dAXTr(F FIY) (4.79)

The delta function restricts the integration to gauge configurations lying on the slice
F(A,) =0, i.e., the integral only includes the contributions of the representatives
of each gauge orbit.
To find an explicit expression for Agp[A,] we use a functional version of the
delta-function identity (2.10), namely
.

—1
(U - U"), (4.80)

{7 (1))

where U’ is a gauge transformation such that .# (AZ/) = 0 for a given A,,. Going

sU

8.7 (AY
det [M

back to Eq.(4.75) and integrating over U using the delta function, we find that
Arp [A u] can be expressed as the following functional determinant

4.81)

8§.F(AY
AFP[A[,L] = det [M}

sU

U=1

In writing this expression we have used that App[A,] = App[Allf/f1 ]. This means
that in the computation of the Faddeev—Popov determinant we have to impose that
the gauge field lies on the gauge slice #(A,) = 0.

It should be clear that the value of the path integral (4.79) is not modified by
changing the position of the slice defined by (4.74). That is, the value of 2" does not
change if we replace . (A,) by #(A,) = f(x), where f(x) is an arbitrary Lie
algebra valued function of the coordinates,

z :/ DA ARl A I8[ F(A) = fx) [em 8T ETERFD 4 80)
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Since the previous expression is independent of f (x) we can insert the constant term

/ .@feié JahT @ constant, (4.83)

and carry out the integration over f(x) using the delta function. Modulo a global
normalization, this gives

: 4 _1 v_ 1 g 2
% = / D4, ApplA)e X[~ Fu =L () ], (4.84)

where £ is an arbitrary real parameter. The new term added to the action is called the
gauge fixing term.

We illustrate the previous discussion with two examples. We begin with QED and
impose the Lorentz gauge .# (A,,) = 9, A*. Using U (x) = ¢ we find

8.7 (AY) 1
- = ——3,0".  (4.85)
e

F(A]) =0, A" +9,0"e = ST

U=1

Hence App[A,] = |det(—$8M8“)| is independent of the gauge field. This means
that we do not have to bother computing the determinant because it goes out of the
path integral as an irrelevant global normalization constant. The typical functional
integral for QED can be written as

20D = / DYDY DA, e S TSen), (4.86)

where the action and the gauge-fixing term read

SQED + St = / d*x [W(w— m)y — %FWF’” - % (auA#)Z] . 487)
The conclusion is that the problem of gauge invariance in the path integral quantiza-
tion of QED is handled in a Lorentz-invariant way by adding a gauge fixing term to
the action. The constant £ is arbitrary and can be chosen to make some expressions
simpler. In Chap. 6 we will learn how to compute observables in QED.

The case of nonabelian Yang—Mills theories is more complicated and here we
only outline the procedure. Using the Lorentz condition .# (A,) = 9, A" and the
gauge transformation 6 A, = gYLMD” x we find

U
s7AD| 1

sU U1 igYM

3, D", (4.88)

where D,, is the covariant derivative in the adjoint representation, given by (4.48).
Unlike the case of QED, now the Faddeev—Popov determinant depends on the gauge
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field, even after imposing the Lorentz condition 9, A* = 0. This has to be taken into
account when carrying out the integration over A,,. The standard way to proceed
now is to write Arp[A,] as a path integral over some unphysical fields called the
Faddeev—Popov ghosts. The details can be found in most of the textbooks listed in
Ref. [1-15] of Chap. 1.

The use of Faddeev—Popov ghosts in nonabelian gauge theories can be avoided,
for example, in the axial gauge n** A, = 0, with n;,n* < 0. In this case

8.7 (AY)

sU

1
= - n*D,,. (4.89)
1gYm

Uu=1

Imposing the gauge condition n* A, = 0, we find that n* D, = n*9, and App[A ]
is independent of the gauge field. It can be absorbed in the global normalization of
the path integral, and the partition function (4.79) becomes

o — / QAM(S["VAV]E—% [ d*XTr(Fy F)

_ / DA T F FI—gntnt Ay A, (4.90)

4.7 The Structure of the Gauge Theory Vacuum

The topology of the gauge group plays an important physical role in Yang—Mills
theories. To illustrate the issue, we first look at a toy model: a U(1) gauge theory in
1+1 dimensions. Later we will be more general. We will also point out a number
of subtleties involved in the definition of the topology of the gauge field making the
arguments presented more semiclassical rather than nonperturbative.

In the Hamiltonian formalism, gauge transformations g(x) are functions defined
on R with values on the gauge group U(1)

g:R— U). 4.91)

We assume that g(x) is regular at infinity. In this case we can add to the real line
R the point at infinity and compactify it to the circle S! (see Fig.4.3). Once this is
done, the g(x)’s are functions defined on S' with values on U(1) = S! that can be
parametrized as

g:S'— U1, gx) =W, (4.92)

with x € [0, 27].
Since S! does have a nontrivial topology, g (x) is divided into topological sectors.
They are labelled by an integer number n € Z and defined by
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® ©

(a) (b)

Fig.4.3 Compactification of the real line (a) into the circumference S 1 (b) by adding the point at
infinity

a(2r) = a(0) 4+ 27n. (4.93)

Geometrically, n is the number of times that the spatial S' winds around the gauge
group U(1). This winding number can be written equivalently as

fg(x)“dg(x) = 2mn, (4.94)
Sl

where the integral is along the spatial S'.

Something similar happens in the case of a SU(2) gauge theory in 3+ 1 dimen-
sions.” Demanding g(x) € SU(2) to be regular at spatial infinity, |x| — oo, we
can compactify R? into a three-dimensional sphere S3, exactly as we did in 1+1
dimensions. The matrices g(x) can be parameterized as

g =a’®1 +iax) - o, (4.95)

with o; the Pauli matrices. The conditions g(x)Tg(x) =1, detg =1 imply (@? +
aZ = 1. Hence SU(2) is a three-dimensional sphere and g(x) defines a map from the
spatial S3 to the S° defined by the gauge group

g:8 — 53 (4.96)

As in the (1 + 1)-dimensional case, the gauge transformations g(x) are divided into
topological sectors labelled this time by the integer winding number

n= Tlﬂz/d3x€ijk'rr|: (g_laig) (g—laig) (g—laig) ] 4.97)
$3

In U(1) and SU(2), gauge transformations split into different sectors labelled by
an integer. Since this winding number is a continuous function of the gauge trans-
formation g(x), two transformations with different values of n cannot be smoothly

3 Although we present for simplicity only the case of SU(2), similar arguments apply to any simple

group.
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deformed into each other. The sector withn = 0 corresponds to those transformations
that can be continuously connected with the identity.

Now we will be a bit more formal. Let us consider a gauge theory in 3+ 1 dimen-
sions with gauge group G and let us denote by ¢ the set of all gauge transformations
g(x) approaching the identity at spatial infinity, 4 = {g : S — G}. At the same
time we introduce the subgroup ¢ C ¢ containing all transformations in ¢ that can
be smoothly deformed into the identity. Our theory will have topological sectors if

GG # 1. (4.98)

The existence of these topological sectors in (3 + 1)-dimensional gauge theories is
controlled by a mathematical object called the third homotopy group of the gauge
group that is denoted by 73(G). For example, it can be proved [14] that 73 (S] ) =1,
i.e., the third homotopy group of U(1) is trivial and therefore no topological sectors
appear in (3 + 1)-dimensional electrodynamics. On the other hand, 73 (S 3y =Zand
as a consequence the topological sectors of the SU(2) gauge theory are labelled by
a single integer, the winding number® (4.97).

In the case of electromagnetism, we have seen that Gauss’ law annihilates physical
states. For a nonabelian theory the analysis is similar and leads to the condition

% (80)Iphys) = exp [i / dxx*x)(D - E)A} Iphys) = [phys), (4.99)

where go(x) = e X T §q in the connected component of the identity %, and D; is
the covariant derivative in the adjoint representation. The important point here is that
only the elements of 4 can be written as exponentials of the infinitesimal generators.
Since these generators annihilate the physical states, this implies % (go)|phys) =
|phys) only when go(x) € %.

What happens with gauge transformations in the other topological sectors? If
g € 9 /% there is still a unitary operator % (g) implementing gauge transformations
on the Hilbert space of the theory. However since g is not in the connected component
of the identity, it cannot be written as the exponential of Gauss’ law. Still, gauge
invariance is preserved if %/ (g) only changes the overall global phase of the physical
states. For example, if g (x) is a gauge transformation with winding number n = 1

% (g1)|phys) = '’ |phys). (4.100)

It is easy to convince oneself that all transformations with winding number n = 1
have the same value of & modulo 2. This can be shown by noticing that if g(x)
has n = 1 then g(x)~! has opposite winding number n = — 1. It is a simple exercise
to prove that the winding number is additive: given two transformations g1, g with
winding number 1, g;° lgz has winding number n = 0. This leads to

6 The existence of topological sectors in (1 + 1)-dimensional electrodynamics is a consequence of
the nontrivial character of the first homotopy group of S!, namely 7 (S') = Z.
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Iphys) = % (g7 ' g2)Iphys) = % (21)"% (g2) Iphys) (4.101)

= ¢/ |phys), '
thus 61 = 6> mod 2x. Therefore a gauge transformation g, (x) with winding number
n acts on physical states according to

% (gn)|phys) = ¢ |phys), n € Z. (4.102)

To find a physical interpretation of this result, we look for a similar situation in
a more familiar setup, for example the quantum states of electrons in the periodic
potential produced by the ion lattice in a solid. For simplicity, we discuss the one-
dimensional case where the minima of the potential are separated by a distance a.
When the barrier between consecutive degenerate vacua is high enough, we can
neglect tunneling between different vacua and consider the ground states |na) of the
potential near the minimum located at x = na (n € Z) as possible vacua of the
theory. These ground states are not invariant under lattice translations

¢“Plnay = |(n + Da). (4.103)

It is nevertheless possible to define a new vacuum state

k) = Z e na), (4.104)

neZ

which under ¢/“” transforms just by a global phase

FPlky = e (n 4 1ya) = k). (4.105)
nez

This ground state is labelled by the momentum k and corresponds to the Bloch wave
function.

This is very similar to what we found for nonabelian gauge theories. The vacuum
state labelled by 6 plays a role similar to the Bloch wave function for the periodic
potential with the identification of 6 with the momentum k. To make this analogy
more precise, let us write the Hamiltonian for nonabelian gauge theories

H= %/cﬁx(nf‘ 74+ BA -BA) - %/d%(EA EA +BA -BA), (4.106)

where we have used the expression of the canonical momenta 7’4, Moreover, we
work in the gauge Ap = 0 and assume that the Gauss law constraint is satisfied.
The first term in the integral is the kinetic energy, 7 = %rrA -4, and the second
the potential energy, V = %BA -BA. Since V > 0, the vacua of the theory can be
identified with those gauge field configurations for which V' = 0, modulo gauge
transformations. This happens when A (0, x) is a pure gauge. Since gauge transfor-
mations are classified by their winding number, there are infinitely many ground
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states. Indeed, taking a representative gauge transformation g, (x) in the sector with
winding number 7, these vacua will be associated with the gauge potentials

AQ0,x) = —l.gﬁgn(X)Vgn(X)_l, (4.107)

modulo topologically trivial gauge transformations. Thus the theory is characterized
by an infinite number of ground states |n) labelled by the winding number.

These vacua are not gauge invariant. A gauge transformation with n = 1 changes
the winding number of the vacuum by one unit

U (g1)In) = |n+1). (4.108)
As with Bloch waves, a gauge invariant vacuum can be defined

10) =D e ™|n) witho R, (4.109)

nez

transforming under a gauge transformation by a global phase
U (g1)10) = ¢16). (4.110)

We have concluded that the nontrivial topology of the gauge group has very
important physical consequences for the quantum theory. In particular, it implies an
ambiguity in the definition of the vacuum. This can also be seen in a Lagrangian
analysis. In constructing the Lagrangian for the nonabelian version of the Maxwell
theory we only considered the term F /va #vA_ However this is not the only Lorentz
and gauge invariant term containing just two derivatives. We can write the more

general action

1 0g3 ~
S=—3 / d4xTr(F/WF’”) - ﬁ / d4xTr(FWF’”), 4.111)

where F, wv 1s the dual of the field strength defined by

Fuy = %EWMF“. (4.112)
The constant 8 is dimensionless in natural units. The extra term in (4.111), propor-
tional to EA - B4, is a total derivative and does not change the equations of motion
or the quantum perturbation theory.
This, however, does not mean that the addition of the second piece in the action
(4.111) does not change the physics. It can be directly checked that

2
fg;“z Tr(Fu ) = 8, 7" 4.113)
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Fig.4.4 Region of
integration to compute the
contribution of the 6-term to
the gauge theory action. The
gauge field A(z, x) tends to
pure gauge configurations
both at early and late times

t — +o0 and at spatial

i
infinity |x| — oo (the side of e
the cylinder)
space
with
g%(M A 2igym
S = oG T (Fig Ay — AvAyA; ). (4.114)

Thus, the contribution of the second term in (4.111) can be computed using Gauss’
theorem. To ensure the convergence of the integral we assume that A (¢, x) approaches
apure gauge configuration both at spatial infinity and at late and early times t — =o00.
To be more precise we assume that

At — 00,X) —> —;g(x)Vg(x)_l, (4.115)
18YM

while A(z, x) is taken to vanish at + — —oo. This last condition implies no loss of
generality, since it can always be achieved by an appropriate gauge transformation.

In the gauge A? = 0 it is easy to check that I i — 0 at spatial infinity. Hence,
the integral of the topological term in the action only receives contributions from the
boundaries at t — 400 (see Fig.4.4). This yields

2
Sym / d4xTr(F,wF’”)

1672
LN L S Tr[( 3 —1)( 3; —1)( 9 —1)] (4.116)
= 247[2 ijk 80i8 80,8 80k8 . .
Comparing this expression with Eq. (4.97) we obtain
083m 4 = A
/d xTr(F,wF’“’) — Onlg] = On[A"]. (4.117)
1672

This term distinguishes gauge fields according to topological sectors: two gauge
fields are in the same sector if the corresponding gauge transformations g giving
their asymptotic behavior at late times have the same winding numbers. This is
very important in the quantum theory, because it means that one must sum over all
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topological sectors when performing the functional integration, each one weighted
by a 6-dependent phase. Symbolically,

7A) =" e " 7AM), (4.118)
nez

where [ZA%], indicates that the integration is performed over gauge fields in the
topological class n[A4] = n. We have reobtained, in the Lagrangian language, the
vacuum degeneracy found above in the canonical formalism.

The presence of the #-term in the gauge theory action has several important phys-
ical consequences. One of them is that it violates both parity P and the combination
of charge conjugation and parity CP. This will be further studied in Chap. 11.

Subtleties and Technicalities

Before closing this section we would like to mention a number of subtleties in the
arguments presented concerning the structure of the gauge group. We have used the
fact that 73(S%) = Z to characterize the number of components of the gauge group
SU(2). In the argument it is crucial that the spatial topology is S>. If this is not the
case, the treatment should be refined. For instance, in noncompact three-dimensional
Euclidean space the type of gauge transformations described by the elements of
4 = {g : §> — G} are those approaching the identity at infinity fast enough and
in a way that does not depend on angles. An equivalent way to describe them is to
consider those gauge transformations that, outside a compact set surrounding the
origin of coordinates, go to the identity very fast. The classes generated by these
gauge transformations can be characterized by an integer number, but this may not
exhaust the topological characterization of all possible nontrivial transformations.

Working on a three-dimensional box with periodic boundary conditions results in
a spatial topology that is that of a three-dimensional torus 7, and the topological
structure of the mappings ¥ = {g : T3 — G} is in general richer than the one
described by the single winding number appearing in S°. In this case we also have
other gauge transformations not included in % and associated to the fact that the space
is not simply connected. These additional transformations are physically relevant,
and play an important role in 't Hooft’s theory of confinement in nonabelian gauge
theories. From this point of view, the topology of the space of gauge transformation
often depends on the type of physical questions asked. Hence, apart from the 6 angle,
there may be other angles or quantum number characterizing the physical states
(or the vacuum) of the theory (see for instance [15] and references therein).

To summarize, the implementation of the Gauss’ law constrain and the set of
physical parameter that characterize it depends on the physics and topology of the
problem at hand. In the case of the 8-angle, we can introduce it by either refining
our arguments on the structure of the space of nontrivial gauge transformations, or
simply by arguing that the second term in (4.111) should be included because it is
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local, gauge and Lorentz invariant and with the same canonical dimension as the
kinetic term. Extracting the dependence of physical quantities on the vacuum angle
is in general a highly non-trivial problem that is not fully understood.

4.8 Instantons in Gauge Theories

The existence of multiple vacua in nonabelian gauge theories makes natural to study
the possibility of tunneling between them. As explained in Sect. 2.5, in semiclassical
tunneling this is described by solutions to the Euclidean field equations with finite
action. For nonabelian gauge theories, the analytical continuation to imaginary times
t —> —it, Ag — iAp, leads to the Euclidean action

1
SelAl = 3 / d4xTr(F,wF’”), (4.119)

where the indices now are lowered and raised using §,,,. Since we are interested in
solutions to the Euclidean field equations with finite action, the gauge field A, (¢, x)
has to approach a pure gauge configuration both at spatial infinity |x| — oo as well
as at “early” and “late” Euclidean times, t — =£o0.

In the semiclassical evaluation of the path integral, the contribution of each saddle
point comes weighted by the exponential factor exp{—Sg[A ]}, so the leading contri-
bution is the one with the lowest value of the Euclidean action. To identify the domi-
nant field configurations we use the following inequality valid in Euclidean space

0 < T (Fuo F Fi) (F* F F™) | = 2Tr (Fu F™) 5 2Tr (F F) . (4.120)

The combination of the inequalities for the two signs leads to the bound

1 ~
SElAN] > 5 ‘/d4xTr(FMVF“V)‘. 4.121)

The right-hand side of this expression we already encountered in its Minkowskian
version in Eq. (4.113). In the present setup, it is defined in four-dimensional Euclidean
space and, being a total derivative, it can be written as an integral over the three-
dimensional sphere at infinity, |x| = ,/x*x, — oo. Notice that this term is
independent of the metric and therefore it does not change when continued to
Euclidean space, unlike the Yang—Mills action that picks up an imaginary unit in
front, S[A,] — iSE[A.]
Since the gauge field approaches a pure gauge when |x| — oo

|x]—00 1 1

Au(x) — — 80,8 (4.122)

igyM

the integral in (4.121) is given in terms of the instanton charge Q defined by
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0= [ dous" " Tr(goig ' g00g ' g0ng ™). (4123)

5%

where the integration is performed over the three-dimensional sphere at infinity.
In terms of it, the action bound reads

L[ 4 ) - 872
5 xTr(F,wF ) > ol (4.124)
8ym

A look at (4.120) shows that the previous inequality is saturated if an only if the
Euclidean gauge field is either selfdual or anti-selfdual, namely if its field strength
tensor satisfies

Fuy=+F,,. (4.125)

Euclidean solutions satisfying these conditions are called respectively instantons
(+sign) and anti-instantons (— sign). These are the configurations dominating the
Euclidean amplitudes in the semiclassical limit within each topological sector. It is
important to notice that any (anti-)selfdual gauge field is automatically a solution of
the Euclidean field equations: the (anti)-selfduality condition reduces the equations
of motion D, FF*V = 0 to the Bianchi identities,

"M D Fyy = 0, (4.126)

that are identically satisfied by any field strength tensor (the reader is invited to prove
it as an exercise). Finally, it is easy to see that instantons and anti-instantons have
positive and negative topological charges respectively.

We study the solutions to the selfduality equation with instanton charge Q = 1.
To keep things simple, we consider the case of a SU(2) gauge theory. In fact this
does not mean a big loss of generality: the instanton solutions for other gauge groups
can be constructed in terms of their SU(2) factors. The calculation of the instanton
solution is rather long and its details can be found, for example, in [16]. The result
for the gauge potential in a generic gauge is

2y (" = xg)

aYM (x — x0)% + p?’

A (x) = (4.127)

where a = 1, 2, 3 is the SU(2) index and nl“w are the 't Hooft symbols introduced in
Chap. 3 (see page 35). The field strength

ns, 0
gym [(x — x0)% + p?)?

Fo,(x) = (4.128)

is selfdual and the Euclidean action saturates the bound (4.121) with unit instanton
charge
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872

SelAul = —5—. (4.129)

8ym

The solution (4.127) depends on a number of arbitrary parameters: the coordinates
of its center xg and the size p. These are part of the so-called collective coordinates
of the instanton. They are generated by applying to a given solution the invariances
of the Euclidean action, in our case translations and dilatations

A% (x) —> A%(x +&), A%x) — AAL () (4.130)

respectively. In addition to (x(‘)‘ , p) the general instanton solution have three addi-
tional collective coordinates associated with its orientation in SU(2) space, making a
total of eight collective coordinates. This number might seem smaller than expected,
since the Euclidean gauge action is invariant under the full conformal group that
includes the Euclidean group (rotations and translations), dilatations and special
conformal transformations. The reason why rotations and special conformal trans-
formations do not generate collective coordinates is that the two can be combined
with translations, dilatations and SU(2) rotations to leave the instanton solutions
invariant up to a gauge transformation. As a result only 8 of the total 18 generators
[15 of the Euclidean group plus 3 of SU(2)] give rise to collective coordinates.

Finite action classical solutions to the Euclidean field equations of motion repre-
sent tunneling between different vacua of the theory (see Sect.2.5). Next we want to
show how the instanton solutions (4.127) describe indeed the semiclassical tunneling
between gauge field configurations with topological numbers differing by one unit
(the topological charge of the instanton). In order to make the connection with the
analysis of the gauge theory vacua presented in the previous section, we have to
change from the generic gauge used in writing (4.127) to the gauge Ay = 0. This is
accomplished by a gauge transformation U (¢, X) satisfying

U1, U (1, %) = —igymAo(t, %), (4.131)
such that in this new gauge

At x) =0
(4.132)

A, x) = — UVU™' + UA@, x) U,

igym

The general solution to the differential equation (4.131) depends on an arbitrary
function of x. This is fixed by demanding that the spatial components of the instanton
in the new gauge, A’(z, X), tend to zero at early Euclidean times, t — —oo. With
this condition, the gauge transformation U (¢, x) = exp(i x“T) is determined to be

a(s x)—M T tfarctan| —120 (4.133)
SN Ja—ria)] @
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Since the spatial components of the instanton solution (4.127) vanish as t — 400,
the Euclidean gauge field (4.132) approaches a pure gauge configuration both at early
and late Euclidean times. Therefore it can be interpreted as interpolating between
two vacua of the SU(2) gauge theory. As t — —oo the gauge field is identically zero,
whereas when t — oo the instanton solution approach the vacuum configuration

1
Afr. %) — ———g(X)3ig(x)”" (4.134)
18YM
with
. 2mi (x4 — xg
gx)= lim U(t,x) =exp| ———=T“. (4.135)
e (x —x0)? + p?

This, unlike the A(z, x) = 0 vacuum in the asymptotic Euclidean “past”, is a gauge
configuration with nonvanishing topological number, namely [cf. equation (4.116)]

n[A’]:ﬁ dxeypTe] (s0ig7™") (stig™") (sig™) [ =1, @136)

The final conclusion of our analysis is that the instanton solution (4.127) describes
the tunneling from a gauge theory vacuum with vanishing winding number to a
nontrivial vacuum with winding number equal to one, the difference being equal
to the topological charge of the instanton. A similar analysis can be repeated for
anti-instanton solutions, obtained from (4.127) by replacing the ’t Hooft symbols by
their duals ﬁi‘w [see Eq. (3.11)]. They have instanton charge 0 = —1 and interpolate
between gauge theory vacua with winding numbers that differ by this amount.

(Anti-)Instanton contributions to physical quantities are weighted by

872
exp{ ———101 ). (4.137)
8ym

This factor is nonanalytic around gyy = 0, showing that the effect of tunneling
between different gauge theory vacua is truly nonperturbative. We see that at weak
coupling instanton effects are exponentially suppressed and therefore overshadowed
by any perturbative contribution to the same process, that necessarily scales with
a positive power of gym. This is the reason why instantons are mostly relevant in
physical situations where perturbative terms are known to be zero.
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